spikingjelly.activation_based.examples.PPO 源代码

import gym
import math
import random
import numpy as np

import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
from torch.distributions import Normal

from torch.utils.tensorboard import SummaryWriter
from spikingjelly.activation_based.examples.common.multiprocessing_env import SubprocVecEnv


# Use CUDA
use_cuda = torch.cuda.is_available()
device   = torch.device('cuda' if use_cuda else 'cpu')

# Set Seed
seed = 1

random.seed(seed)
np.random.seed(seed)

torch.cuda.manual_seed(seed)
torch.manual_seed(seed)
torch.backends.cudnn.deterministic = True

# Create Environments
num_envs = 4
env_name = 'CartPole-v0'

[文档]def make_env(): def _thunk(): env = gym.make(env_name) env.seed(seed) return env return _thunk
# Neural Network
[文档]class ActorCritic(nn.Module): def __init__(self, num_inputs, num_outputs, hidden_size, std=0.0): super(ActorCritic, self).__init__() self.critic = nn.Sequential( nn.Linear(num_inputs, hidden_size), nn.ReLU(), nn.Linear(hidden_size, 1) ) self.actor = nn.Sequential( nn.Linear(num_inputs, hidden_size), nn.ReLU(), nn.Linear(hidden_size, num_outputs), ) self.log_std = nn.Parameter(torch.ones(1, num_outputs) * std)
[文档] def forward(self, x): value = self.critic(x) mu = self.actor(x) std = self.log_std.exp().expand_as(mu) dist = Normal(mu, std) return dist, value
if __name__ == '__main__': envs = [make_env() for i in range(num_envs)] envs = SubprocVecEnv(envs) env = gym.make(env_name) env.seed(seed) def test_env(vis=False): state = env.reset() if vis: env.render() done = False total_reward = 0 while not done: state = torch.FloatTensor(state).unsqueeze(0).to(device) dist, _ = model(state) next_state, reward, done, _ = env.step(torch.max(dist.sample(), 1)[1].cpu().numpy()[0]) state = next_state if vis: env.render() total_reward += reward return total_reward # GAE def compute_gae(next_value, rewards, masks, values, gamma=0.99, tau=0.95): values = values + [next_value] gae = 0 returns = [] for step in reversed(range(len(rewards))): delta = rewards[step] + gamma * values[step + 1] * masks[step] - values[step] gae = delta + gamma * tau * masks[step] * gae returns.insert(0, gae + values[step]) return returns # Proximal Policy Optimization Algorithm # Arxiv: "https://arxiv.org/abs/1707.06347" def ppo_iter(mini_batch_size, states, actions, log_probs, returns, advantage): batch_size = states.size(0) ids = np.random.permutation(batch_size) ids = np.split(ids[:batch_size // mini_batch_size * mini_batch_size], batch_size // mini_batch_size) for i in range(len(ids)): yield states[ids[i], :], actions[ids[i], :], log_probs[ids[i], :], returns[ids[i], :], advantage[ids[i], :] def ppo_update(ppo_epochs, mini_batch_size, states, actions, log_probs, returns, advantages, clip_param=0.2): for _ in range(ppo_epochs): for state, action, old_log_probs, return_, advantage in ppo_iter(mini_batch_size, states, actions, log_probs, returns, advantages): dist, value = model(state) entropy = dist.entropy().mean() new_log_probs = dist.log_prob(action) ratio = (new_log_probs - old_log_probs).exp() surr1 = ratio * advantage surr2 = torch.clamp(ratio, 1.0 - clip_param, 1.0 + clip_param) * advantage actor_loss = - torch.min(surr1, surr2).mean() critic_loss = (return_ - value).pow(2).mean() loss = 0.5 * critic_loss + actor_loss - 0.001 * entropy optimizer.zero_grad() loss.backward() optimizer.step() num_inputs = envs.observation_space.shape[0] num_outputs = env.action_space.n print('State Num: %d, Action Num: %d' % (num_inputs, num_outputs)) # Hyper params: hidden_size = 32 lr = 1e-3 num_steps = 128 mini_batch_size = 256 ppo_epochs = 30 model = ActorCritic(num_inputs, num_outputs, hidden_size).to(device) optimizer = optim.Adam(model.parameters(), lr=lr) max_steps = 10000 step_idx = 0 state = envs.reset() writer = SummaryWriter(logdir='./log') while step_idx < max_steps: log_probs = [] values = [] states = [] actions = [] rewards = [] masks = [] entropy = 0 for _ in range(num_steps): state = torch.FloatTensor(state).to(device) dist, value = model(state) action = dist.sample() next_state, reward, done, _ = envs.step(torch.max(action, 1)[1].cpu().numpy()) log_prob = dist.log_prob(action) entropy += dist.entropy().mean() log_probs.append(log_prob) values.append(value) rewards.append(torch.FloatTensor(reward).unsqueeze(1).to(device)) masks.append(torch.FloatTensor(1 - done).unsqueeze(1).to(device)) states.append(state) actions.append(action) state = next_state step_idx += 1 if step_idx % 100 == 0: test_reward = test_env() print('Step: %d, Reward: %.2f' % (step_idx, test_reward)) writer.add_scalar('PPO-' + env_name + '/Reward', test_reward, step_idx) next_state = torch.FloatTensor(next_state).to(device) _, next_value = model(next_state) returns = compute_gae(next_value, rewards, masks, values) returns = torch.cat(returns).detach() log_probs = torch.cat(log_probs).detach() values = torch.cat(values).detach() states = torch.cat(states) actions = torch.cat(actions) advantage = returns - values ppo_update(ppo_epochs, mini_batch_size, states, actions, log_probs, returns, advantage) print('----------------------------') print('Complete') writer.close()