spikingjelly.activation_based.examples.Spiking_A2C 源代码

import gym
import math
import random
import numpy as np

import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
from torch.distributions import Categorical

from torch.utils.tensorboard import SummaryWriter
from spikingjelly.activation_based.examples.common.multiprocessing_env import SubprocVecEnv

from spikingjelly.activation_based import neuron, functional, layer


# Use CUDA
use_cuda = torch.cuda.is_available()
device = torch.device('cuda' if use_cuda else 'cpu')

# Set Seed
seed = 1

random.seed(seed)
np.random.seed(seed)

torch.cuda.manual_seed(seed)
torch.manual_seed(seed)
torch.backends.cudnn.deterministic = True


[文档]class NonSpikingLIFNode(neuron.LIFNode): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs)
[文档] def single_step_forward(self, x: torch.Tensor): self.v_float_to_tensor(x) if self.training: self.neuronal_charge(x) else: if self.v_reset is None: if self.decay_input: self.v = self.neuronal_charge_decay_input_reset0(x, self.v, self.tau) else: self.v = self.neuronal_charge_no_decay_input_reset0(x, self.v, self.tau) else: if self.decay_input: self.v = self.neuronal_charge_decay_input(x, self.v, self.v_reset, self.tau) else: self.v = self.neuronal_charge_no_decay_input(x, self.v, self.v_reset, self.tau)
# Neural Network
[文档]class ActorCritic(nn.Module): def __init__(self, num_inputs, num_outputs, hidden_size, T=16): super(ActorCritic, self).__init__() self.critic = nn.Sequential( layer.Linear(num_inputs, hidden_size), neuron.IFNode(), layer.Linear(hidden_size, 1), NonSpikingLIFNode(tau=2.0) ) self.actor = nn.Sequential( layer.Linear(num_inputs, hidden_size), neuron.IFNode(), layer.Linear(hidden_size, num_outputs), NonSpikingLIFNode(tau=2.0) ) self.T = T
[文档] def forward(self, x): for t in range(self.T): self.critic(x) self.actor(x) value = self.critic[-1].v probs = F.softmax(self.actor[-1].v, dim=1) dist = Categorical(probs) return dist, value
if __name__ == '__main__': # Create Environments num_envs = 4 env_name = 'CartPole-v0' def make_env(): def _thunk(): env = gym.make(env_name) env.seed(seed) return env return _thunk envs = [make_env() for i in range(num_envs)] envs = SubprocVecEnv(envs) env = gym.make(env_name) env.seed(seed) def test_env(vis=False): state = env.reset() if vis: env.render() done = False total_reward = 0 while not done: state = torch.FloatTensor(state).unsqueeze(0).to(device) dist, _ = model(state) functional.reset_net(model) next_state, reward, done, _ = env.step(dist.sample().cpu().numpy()[0]) state = next_state if vis: env.render() total_reward += reward return total_reward # A2C: Synchronous Advantage Actor Critic def compute_returns(next_value, rewards, masks, gamma=0.99): R = next_value returns = [] for step in reversed(range(len(rewards))): R = rewards[step] + gamma * R * masks[step] returns.insert(0, R) return returns num_inputs = envs.observation_space.shape[0] num_outputs = envs.action_space.n print('State Num: %d, Action Num: %d' % (num_inputs, num_outputs)) # Hyper params: hidden_size = 256 lr = 3e-4 num_steps = 5 T = 16 model = ActorCritic(num_inputs, num_outputs, hidden_size, T).to(device) optimizer = optim.Adam(model.parameters(), lr=lr) max_steps = 100000 step_idx = 0 state = envs.reset() writer = SummaryWriter(logdir='./log') while step_idx < max_steps: log_probs = [] values = [] rewards = [] masks = [] entropy = 0 for _ in range(num_steps): state = torch.FloatTensor(state).to(device) dist, value = model(state) functional.reset_net(model) action = dist.sample() next_state, reward, done, _ = envs.step(action.cpu().numpy()) log_prob = dist.log_prob(action) entropy += dist.entropy().mean() log_probs.append(log_prob) values.append(value) rewards.append(torch.FloatTensor(reward).unsqueeze(1).to(device)) masks.append(torch.FloatTensor(1 - done).unsqueeze(1).to(device)) state = next_state step_idx += 1 if step_idx % 1000 == 0: test_reward = test_env() print('Step: %d, Reward: %.2f' % (step_idx, test_reward)) writer.add_scalar('Spiking-A2C-multi_env-' + env_name + '/Reward', test_reward, step_idx) next_state = torch.FloatTensor(next_state).to(device) _, next_value = model(next_state) functional.reset_net(model) returns = compute_returns(next_value, rewards, masks) log_probs = torch.cat(log_probs) returns = torch.cat(returns).detach() values = torch.cat(values) advantage = returns - values actor_loss = - (log_probs * advantage.detach()).mean() critic_loss = advantage.pow(2).mean() loss = actor_loss + 0.5 * critic_loss - 0.001 * entropy optimizer.zero_grad() loss.backward() optimizer.step() # print(test_env(True)) print('----------------------------') print('Complete') writer.close()