spikingjelly.activation_based.spike_op package
Module contents
- spikingjelly.activation_based.spike_op.spike_linear(spike: Tensor, weight: Tensor, bias: Optional[Tensor] = None) Tensor [源代码]
-
torch.nn.functional.linear
在输入为脉冲时的特例。备注
在CUDA设备上训练时拥有比
torch.nn.functional.linear
更低的显存消耗。警告
spike 中的任何元素都必须为0或1。
A specific case of
torch.nn.functional.linear
with inputs are spikes.Note
This function has less memory consumption than
torch.nn.functional.linear
when training on CUDA devices.Warning
Any element in spike must be 0 or 1.
- spikingjelly.activation_based.spike_op.spike_conv1d(spike: Tensor, weight: Tensor, bias: Optional[Tensor] = None, stride: Union[int, Size, List[int], Tuple[int, ...]] = 1, padding: str = 'valid', dilation: Union[int, Size, List[int], Tuple[int, ...]] = 1, groups: int = 1) Tensor [源代码]
-
torch.nn.functional.conv1d
在输入为脉冲时的特例。备注
在CUDA设备上训练时拥有比
torch.nn.functional.conv1d
更低的显存消耗。警告
spike 中的任何元素都必须为0或1。
A specific case of
torch.nn.functional.conv1d
with inputs are spikes.Note
This function has less memory consumption than
torch.nn.functional.conv1d
when training on CUDA devices.Warning
Any element in spike must be 0 or 1.
- spikingjelly.activation_based.spike_op.spike_conv2d(spike: Tensor, weight: Tensor, bias: Optional[Tensor] = None, stride: Union[int, Size, List[int], Tuple[int, ...]] = 1, padding: str = 'valid', dilation: Union[int, Size, List[int], Tuple[int, ...]] = 1, groups: int = 1) Tensor [源代码]
-
torch.nn.functional.conv2d
在输入为脉冲时的特例。备注
在CUDA设备上训练时拥有比
torch.nn.functional.conv2d
更低的显存消耗。警告
spike 中的任何元素都必须为0或1。
A specific case of
torch.nn.functional.conv2d
with inputs are spikes.Note
This function has less memory consumption than
torch.nn.functional.conv2d
when training on CUDA devices.Warning
Any element in spike must be 0 or 1.
- spikingjelly.activation_based.spike_op.spike_conv3d(spike: Tensor, weight: Tensor, bias: Optional[Tensor] = None, stride: Union[int, Size, List[int], Tuple[int, ...]] = 1, padding: str = 'valid', dilation: Union[int, Size, List[int], Tuple[int, ...]] = 1, groups: int = 1) Tensor [源代码]
-
torch.nn.functional.conv3d
在输入为脉冲时的特例。备注
在CUDA设备上训练时拥有比
torch.nn.functional.conv3d
更低的显存消耗。警告
spike 中的任何元素都必须为0或1。
A specific case of
torch.nn.functional.conv3d
with inputs are spikes.Note
This function has less memory consumption than
torch.nn.functional.conv3d
when training on CUDA devices.Warning
Any element in spike must be 0 or 1.
- class spikingjelly.activation_based.spike_op.SpikeLinear(in_features: int, out_features: int, bias: bool = True, device=None, dtype=None)[源代码]
基类:
Linear
torch.nn.Linear
在输入为脉冲时的特例。备注
在CUDA设备上运行时拥有比
torch.nn.Linear
更低的显存消耗。警告
spike 中的任何元素都必须为0或1。
A specific case of
torch.nn.Linear
with inputs are spikes.Note
This function has less memory consumption than
torch.nn.Linear
when training on CUDA devices.Warning
Any element in spike must be 0 or 1.
- class spikingjelly.activation_based.spike_op.SpikeConv1d(in_channels: int, out_channels: int, kernel_size: Union[int, Tuple[int]], stride: Union[int, Tuple[int]] = 1, padding: Union[str, int, Tuple[int]] = 0, dilation: Union[int, Tuple[int]] = 1, groups: int = 1, bias: bool = True, padding_mode: str = 'zeros', device=None, dtype=None)[源代码]
基类:
Conv1d
torch.nn.Conv1d
在输入为脉冲时的特例。备注
在CUDA设备上运行时拥有比
torch.nn.Conv1d
更低的显存消耗。警告
spike 中的任何元素都必须为0或1。
A specific case of
torch.nn.Conv1d
with inputs are spikes.Note
This function has less memory consumption than
torch.nn.Conv1d
when training on CUDA devices.Warning
Any element in spike must be 0 or 1.
- class spikingjelly.activation_based.spike_op.SpikeConv2d(in_channels: int, out_channels: int, kernel_size: Union[int, Tuple[int, int]], stride: Union[int, Tuple[int, int]] = 1, padding: Union[str, int, Tuple[int, int]] = 0, dilation: Union[int, Tuple[int, int]] = 1, groups: int = 1, bias: bool = True, padding_mode: str = 'zeros', device=None, dtype=None)[源代码]
基类:
Conv2d
torch.nn.Conv2d
在输入为脉冲时的特例。备注
在CUDA设备上运行时拥有比
torch.nn.Conv2d
更低的显存消耗。警告
spike 中的任何元素都必须为0或1。
A specific case of
torch.nn.Conv2d
with inputs are spikes.Note
This function has less memory consumption than
torch.nn.Conv2d
when training on CUDA devices.Warning
Any element in spike must be 0 or 1.
- class spikingjelly.activation_based.spike_op.SpikeConv3d(in_channels: int, out_channels: int, kernel_size: Union[int, Tuple[int, int, int]], stride: Union[int, Tuple[int, int, int]] = 1, padding: Union[str, int, Tuple[int, int, int]] = 0, dilation: Union[int, Tuple[int, int, int]] = 1, groups: int = 1, bias: bool = True, padding_mode: str = 'zeros', device=None, dtype=None)[源代码]
基类:
Conv3d
torch.nn.Conv3d
在输入为脉冲时的特例。备注
在CUDA设备上运行时拥有比
torch.nn.Conv3d
更低的显存消耗。警告
spike 中的任何元素都必须为0或1。
A specific case of
torch.nn.Conv3d
with inputs are spikes.Note
This function has less memory consumption than
torch.nn.Conv3d
when training on CUDA devices.Warning
Any element in spike must be 0 or 1.