spikingjelly.activation_based.examples.conv_fashion_mnist 源代码

import matplotlib.pyplot as plt
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision
from spikingjelly.activation_based import neuron, functional, surrogate, layer
from torch.utils.tensorboard import SummaryWriter
import os
import time
import argparse
from torch.cuda import amp
import sys
import datetime
from spikingjelly import visualizing

[文档]class CSNN(nn.Module): def __init__(self, T: int, channels: int, use_cupy=False): super().__init__() self.T = T self.conv_fc = nn.Sequential( layer.Conv2d(1, channels, kernel_size=3, padding=1, bias=False), layer.BatchNorm2d(channels), neuron.IFNode(surrogate_function=surrogate.ATan()), layer.MaxPool2d(2, 2), # 14 * 14 layer.Conv2d(channels, channels, kernel_size=3, padding=1, bias=False), layer.BatchNorm2d(channels), neuron.IFNode(surrogate_function=surrogate.ATan()), layer.MaxPool2d(2, 2), # 7 * 7 layer.Flatten(), layer.Linear(channels * 7 * 7, channels * 4 * 4, bias=False), neuron.IFNode(surrogate_function=surrogate.ATan()), layer.Linear(channels * 4 * 4, 10, bias=False), neuron.IFNode(surrogate_function=surrogate.ATan()), ) functional.set_step_mode(self, step_mode='m') if use_cupy: functional.set_backend(self, backend='cupy')
[文档] def forward(self, x: torch.Tensor): # x.shape = [N, C, H, W] x_seq = x.unsqueeze(0).repeat(self.T, 1, 1, 1, 1) # [N, C, H, W] -> [T, N, C, H, W] x_seq = self.conv_fc(x_seq) fr = x_seq.mean(0) return fr
[文档] def spiking_encoder(self): return self.conv_fc[0:3]
[文档]def main(): ''' (sj-dev) wfang@Precision-5820-Tower-X-Series:~/spikingjelly_dev$ python -m spikingjelly.activation_based.examples.conv_fashion_mnist -h usage: conv_fashion_mnist.py [-h] [-T T] [-device DEVICE] [-b B] [-epochs N] [-j N] [-data-dir DATA_DIR] [-out-dir OUT_DIR] [-resume RESUME] [-amp] [-cupy] [-opt OPT] [-momentum MOMENTUM] [-lr LR] Classify Fashion-MNIST optional arguments: -h, --help show this help message and exit -T T simulating time-steps -device DEVICE device -b B batch size -epochs N number of total epochs to run -j N number of data loading workers (default: 4) -data-dir DATA_DIR root dir of Fashion-MNIST dataset -out-dir OUT_DIR root dir for saving logs and checkpoint -resume RESUME resume from the checkpoint path -amp automatic mixed precision training -cupy use cupy neuron and multi-step forward mode -opt OPT use which optimizer. SDG or Adam -momentum MOMENTUM momentum for SGD -save-es dir for saving a batch spikes encoded by the first {Conv2d-BatchNorm2d-IFNode} ''' # python -m spikingjelly.activation_based.examples.conv_fashion_mnist -T 4 -device cuda:0 -b 128 -epochs 64 -data-dir /datasets/FashionMNIST/ -amp -cupy -opt sgd -lr 0.1 -j 8 # python -m spikingjelly.activation_based.examples.conv_fashion_mnist -T 4 -device cuda:0 -b 4 -epochs 64 -data-dir /datasets/FashionMNIST/ -amp -cupy -opt sgd -lr 0.1 -j 8 -resume ./logs/T4_b256_sgd_lr0.1_c128_amp_cupy/checkpoint_latest.pth -save-es ./logs parser = argparse.ArgumentParser(description='Classify Fashion-MNIST') parser.add_argument('-T', default=4, type=int, help='simulating time-steps') parser.add_argument('-device', default='cuda:0', help='device') parser.add_argument('-b', default=128, type=int, help='batch size') parser.add_argument('-epochs', default=64, type=int, metavar='N', help='number of total epochs to run') parser.add_argument('-j', default=4, type=int, metavar='N', help='number of data loading workers (default: 4)') parser.add_argument('-data-dir', type=str, help='root dir of Fashion-MNIST dataset') parser.add_argument('-out-dir', type=str, default='./logs', help='root dir for saving logs and checkpoint') parser.add_argument('-resume', type=str, help='resume from the checkpoint path') parser.add_argument('-amp', action='store_true', help='automatic mixed precision training') parser.add_argument('-cupy', action='store_true', help='use cupy backend') parser.add_argument('-opt', type=str, help='use which optimizer. SDG or Adam') parser.add_argument('-momentum', default=0.9, type=float, help='momentum for SGD') parser.add_argument('-lr', default=0.1, type=float, help='learning rate') parser.add_argument('-channels', default=128, type=int, help='channels of CSNN') parser.add_argument('-save-es', default=None, help='dir for saving a batch spikes encoded by the first {Conv2d-BatchNorm2d-IFNode}') args = parser.parse_args() print(args) net = CSNN(T=args.T, channels=args.channels, use_cupy=args.cupy) print(net) net.to(args.device) train_set = torchvision.datasets.FashionMNIST( root=args.data_dir, train=True, transform=torchvision.transforms.ToTensor(), download=True) test_set = torchvision.datasets.FashionMNIST( root=args.data_dir, train=False, transform=torchvision.transforms.ToTensor(), download=True) train_data_loader = torch.utils.data.DataLoader( dataset=train_set, batch_size=args.b, shuffle=True, drop_last=True, num_workers=args.j, pin_memory=True ) test_data_loader = torch.utils.data.DataLoader( dataset=test_set, batch_size=args.b, shuffle=True, drop_last=False, num_workers=args.j, pin_memory=True ) scaler = None if args.amp: scaler = amp.GradScaler() start_epoch = 0 max_test_acc = -1 optimizer = None if args.opt == 'sgd': optimizer = torch.optim.SGD(net.parameters(), lr=args.lr, momentum=args.momentum) elif args.opt == 'adam': optimizer = torch.optim.Adam(net.parameters(), lr=args.lr) else: raise NotImplementedError(args.opt) lr_scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, args.epochs) if args.resume: checkpoint = torch.load(args.resume, map_location='cpu') net.load_state_dict(checkpoint['net']) optimizer.load_state_dict(checkpoint['optimizer']) lr_scheduler.load_state_dict(checkpoint['lr_scheduler']) start_epoch = checkpoint['epoch'] + 1 max_test_acc = checkpoint['max_test_acc'] if args.save_es is not None and args.save_es != '': encoder = net.spiking_encoder() with torch.no_grad(): for img, label in test_data_loader: img = img.to(args.device) label = label.to(args.device) # img.shape = [N, C, H, W] img_seq = img.unsqueeze(0).repeat(net.T, 1, 1, 1, 1) # [N, C, H, W] -> [T, N, C, H, W] spike_seq = encoder(img_seq) functional.reset_net(encoder) to_pil_img = torchvision.transforms.ToPILImage() vs_dir = os.path.join(args.save_es, 'visualization') os.mkdir(vs_dir) img = img.cpu() spike_seq = spike_seq.cpu() img = F.interpolate(img, scale_factor=4, mode='bilinear') # 28 * 28 is too small to read. So, we interpolate it to a larger size for i in range(label.shape[0]): vs_dir_i = os.path.join(vs_dir, f'{i}') os.mkdir(vs_dir_i) to_pil_img(img[i]).save(os.path.join(vs_dir_i, f'input.png')) for t in range(net.T): print(f'saving {i}-th sample with t={t}...') # spike_seq.shape = [T, N, C, H, W] visualizing.plot_2d_feature_map(spike_seq[t][i], 8, spike_seq.shape[2] // 8, 2, f'$S[{t}]$') plt.savefig(os.path.join(vs_dir_i, f's_{t}.png'), pad_inches=0.02) plt.savefig(os.path.join(vs_dir_i, f's_{t}.pdf'), pad_inches=0.02) plt.savefig(os.path.join(vs_dir_i, f's_{t}.svg'), pad_inches=0.02) plt.clf() exit() out_dir = os.path.join(args.out_dir, f'T{args.T}_b{args.b}_{args.opt}_lr{args.lr}_c{args.channels}') if args.amp: out_dir += '_amp' if args.cupy: out_dir += '_cupy' if not os.path.exists(out_dir): os.makedirs(out_dir) print(f'Mkdir {out_dir}.') writer = SummaryWriter(out_dir, purge_step=start_epoch) with open(os.path.join(out_dir, 'args.txt'), 'w', encoding='utf-8') as args_txt: args_txt.write(str(args)) args_txt.write('\n') args_txt.write(' '.join(sys.argv)) for epoch in range(start_epoch, args.epochs): start_time = time.time() net.train() train_loss = 0 train_acc = 0 train_samples = 0 for img, label in train_data_loader: optimizer.zero_grad() img = img.to(args.device) label = label.to(args.device) label_onehot = F.one_hot(label, 10).float() if scaler is not None: with amp.autocast(): out_fr = net(img) loss = F.mse_loss(out_fr, label_onehot) scaler.scale(loss).backward() scaler.step(optimizer) scaler.update() else: out_fr = net(img) loss = F.mse_loss(out_fr, label_onehot) loss.backward() optimizer.step() train_samples += label.numel() train_loss += loss.item() * label.numel() train_acc += (out_fr.argmax(1) == label).float().sum().item() functional.reset_net(net) train_time = time.time() train_speed = train_samples / (train_time - start_time) train_loss /= train_samples train_acc /= train_samples writer.add_scalar('train_loss', train_loss, epoch) writer.add_scalar('train_acc', train_acc, epoch) lr_scheduler.step() net.eval() test_loss = 0 test_acc = 0 test_samples = 0 with torch.no_grad(): for img, label in test_data_loader: img = img.to(args.device) label = label.to(args.device) label_onehot = F.one_hot(label, 10).float() out_fr = net(img) loss = F.mse_loss(out_fr, label_onehot) test_samples += label.numel() test_loss += loss.item() * label.numel() test_acc += (out_fr.argmax(1) == label).float().sum().item() functional.reset_net(net) test_time = time.time() test_speed = test_samples / (test_time - train_time) test_loss /= test_samples test_acc /= test_samples writer.add_scalar('test_loss', test_loss, epoch) writer.add_scalar('test_acc', test_acc, epoch) save_max = False if test_acc > max_test_acc: max_test_acc = test_acc save_max = True checkpoint = { 'net': net.state_dict(), 'optimizer': optimizer.state_dict(), 'lr_scheduler': lr_scheduler.state_dict(), 'epoch': epoch, 'max_test_acc': max_test_acc } if save_max: torch.save(checkpoint, os.path.join(out_dir, 'checkpoint_max.pth')) torch.save(checkpoint, os.path.join(out_dir, 'checkpoint_latest.pth')) print(args) print(out_dir) print(f'epoch = {epoch}, train_loss ={train_loss: .4f}, train_acc ={train_acc: .4f}, test_loss ={test_loss: .4f}, test_acc ={test_acc: .4f}, max_test_acc ={max_test_acc: .4f}') print(f'train speed ={train_speed: .4f} images/s, test speed ={test_speed: .4f} images/s') print(f'escape time = {(datetime.datetime.now() + datetime.timedelta(seconds=(time.time() - start_time) * (args.epochs - epoch))).strftime("%Y-%m-%d %H:%M:%S")}\n')
if __name__ == '__main__': main()